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Abstract-A perturbation analysis is performed which includes the effect of a small amount of thermal 
buoyancy on the velocity and temperature fields of a round, laminar, vertical jet. A numerical solution 
of the resulting perturbation equations shows that the predominant effect of positive thermal buoyancy is to 
increase the axial velocity component of the jet. The magnitude of the effect is shown to increase for de- 
creasing Prandtl numbers. Other details of buoyancy effects on the flow and temperature fields are pre- 
sented and discussed. It is expected that buoyancy effects may have a large influence on laminar stability. 

INTRODUCTION 

Flows commonly referred to as jets may be 
regarded as a part of a more general category of 
flows characterized by the absence of rigid 
boundaries. These “free boundary” flows include 
such things as jets, wakes, plumes, and thermals. 
It is convenient to further subdivide these flows 
on the basis of whether they are laminar or 
turbulent, and/or buoyant or nonbuoyant. There 
are a nearly unlimited number of important 
physical examples of these types of flows. Such 
flows are important in technology, meteorology, 
oceanography, air and water pollution etc. A few 
more specific examples are associated with the 
mechanics of cloud formation and cloud top 
oscillation, buoyancy driven ocean circulations, 
and the thermal circulation in lakes, resulting 
perhaps from water discharges. The purpose of 
this work is to determine the effect of thermal 
buoyancy on the velocity and temperature 
fields of a round laminar vertical jet. 

The first important study recorded in the 
literature was Schlichting’s [l] solution of the 
laminar jet in 1933. Using boundary layer 
approximations, similarity solutions were found 
for both the two-dimensional and axisymmetric 
jets. A closed form solution was presented for 

the axisymmetric case. Later Bickley [2] pub- 
lished a closed form solution for the two-dimen- 
sional case. Schlichting had also found this 
solution shortly after the publication of [l]. 
Results of these analyses showed that axial 
velocities decay as x-* and x-i for the two- 
dimensional and axially symmetric jets res- 
pectively, and that the mass flow rates increase as 
x* and x, respectively. Note here that x is the 
coordinate along the axis of the jet, measured 
from its origin. 

In 1937 Andrade and Tsien [3] experiment- 
ally verified Schlichting’s results. They used a 
small (@04O in.) diameter jet propelled by a 
hydrostatic head. The flow was observed optic- 
ally by using suspended aluminum particles 
over the Reynolds number range from 50 to 
300 (calculated from conditions at the nozzle) 
and the results agreed well with Schlichting’s 
solution. Similar experiments with two-dimen- 
sional jets [4] proved to be less successful 
mainly because of the tendency of the jet to 
twist and assume a non-two-dimensional form. 

The solution for a round laminar jet by Land- 
dau [5] in 1943 is also important as one of the 
few exact solutions of the complete Navier- 
Stokes equations. This solution does not rely on 
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boundary layer simplifications. A spherical 
polar coordinate system is used and a similarity 
solution (in the usual sense) is found that results 
in closed form expressions for the velocity field. 
By using a series expansion involving the angle 
of spread, it can be shown that this solution 
becomes equivalent to that using boundary 
layer approximations for Reynolds numbers 
greater than 8. 

Eight years after Landau’s [S] results were 
presented, Squire [6] published an identical 
analysis. Squire [6] also presented a temperature 
solution neglecting the effects of buoyancy. It 
can be shown that this temperature solution 
also reduces to the boundary layer result at 
sufficiently large Reynolds numbers. 

A paper in 1967 by Brand and Lahey [7] 
repeats various known point and line source 
plume solutions and attempts to relate plume and 
jet flows. The usefulness of the results is not 
apparent. The chosen matching conditions are 
that the jet velocity and temperature profiles 
match (in an average sense) a particular known 
plume flow at some location. 

Although certain gross aspects of buoyancy 
have been observed by Vignes [g], there have 
been no experiments dealing directly with the 
effects of buoyancy on the details of the velocity 
and temperature profiles of laminar jets. There 
have, however, been several experiments [9-l l] 
concerned with the transition of laminar jets to 
turbulence. Some of these may have been sig- 

nificantly influenced by buoyancy effects. 
McNaughton and Sinclair [9] state that small 
density differences between the inlet solution 
and the fluid in the vessel considerably affected 
the behavior of the jets. Marsters [ 10) calculated 
Gr/IXe’ to be 2 x 10m4 for his experiments and 
concluded that buoyant effects on his data are 
small. The work of McKenzie and Wall [l l] lacks 
adequate documentation but it appears that 
the jets considered may have actually been 
quite buoyant. The relevant question in these 
studies may have actually been the effect of 
buoyancy on the hydrodynamic stability of a 
laminar jet. 

ANALYSIS 

We begin by presenting the full set of govern- 
ing equations, apply the appropriate approxima- 
tions, and review the known, non-buoyant, 
closed-form similarity solution. The effect of 
buoyancy is then included as a linear perturba- 
tion of the non-buoyant solution. The perturba- 
tion parameter is determined and the numerical 
procedure for integrating the resulting first 
order equations is discussed. 

Consider the axisymmetric geometry of Fig. 1. 

FIG. 1. Cylindrical coordinate system for axisymmetric jet. 

Assuming that the flow is incompressible and 
neglecting viscous dissipation, the equations 
expressing the conservation of mass, momentum 
and energy for constant fluid properties are : 

p g+(v*v)v r 1 = pg - vp + pvw (?J 

pc,[~+(Y.v)i]=~V”f. (3) 

Considering steady (ajar = 0), axisymmetric 
(a/i% = 0) flow, with no swirl (w = 0); and 
applying the suitable boundary layer and 
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Boussinesq approximations, these equations convected be independent of x is written as 
become : follows. 

(4) &lYU) + $YU, = 0 

(5) 

(6) 

These express the conservation of mass, x- 
direction force-momentum and energy. They 
describe the behavior of an axisymmetric, 
laminar, buoyant jet issuing into a quiescent, 
infinite medium at tan. The following boundary 
conditions are satisfied, where t, is the center- 
line temperature distribution. 

at 

y = 0: u = 0, 
au 
- = 0, ay t = to 

as (7) 

y+ co: u -+ 0, t + t,. 

In 1933, H. Schlichting [l] neglected the 
buoyancy force term in (5) and found a closed 
form similarity solution which satisfies (4) and 
(5) and the velocity conditions of (7). The com- 
patibility condition for a non-buoyant jet is 
that the momentum flux in the x direction be 
constant, i.e. 

J E 7 2npu’y dy = constant. (8) 
0 

As will be seen later, this condition is used to 
determine a constant arising from the integra- 
tion of the momentum equation. Note that 
equation (8) will not be satisfied when the 
effect of buoyancy is included. 

Although we will eventually include thermal 
buoyancy, it is convenient to first sketch a 
solution equivalent to that of [l]. 

These results will form the basis for the 
perturbation method of the next section which 
includes the effects of thermal buoyancy. The 
compatibility condition that the thermal energy 

Q E 7 2npcP(t - t,) uy dy = constant. (9) 
0 

This condition applies whether or not the jet is 
considered buoyant. 

The analysis proceeds through a considera- 
tion of conditions for similarity. The continuity 
equation is identically satisfied by defining a 
Stokes stream function as follows: 

,+ and 
Y 

YE -&. (10) 

Forms for the similarity variable q, stream 
function $, and centerline temperature distribu- 
tion d, are assumed in terms of unknown func- 
tions b(x), c(x), d(x) as follows: 

v = yW)l& II/ = c(x)./%), 

to - t, = d(x). (11) 

Where K is a constant included in the definition 
of? merely for convenience. Also for convenience, 
we define the temperature excess ratio 4, as 

4s 
t-t 
to - t; (12) 

Using equations (10)-(12), equations (4)-(9) 
become 

f (0) = f ‘(0) = 4(O) - 1 = &cc) = f ‘(ccl) = 0 

(15) 
4 

s 

drl f I2 - = JK/2npv2c2b2 
? 

0 

(16) 
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where D is the Prandtl number. 
Similarity requires f and 4 to be functions of 

q alone and this will occur when 

c, = C, = constant 

Eb 
2-E 

b 
6, = cunstant 

dA 3 C E constant. 
d 3 m 

It is also required that the physical boundary 
conditions (7) as well as the compatibility 
conditions (8) and (9) reduce to similarity form. 
These are written out in current terms in 
equations (15+-o-(7). In the appendix, necessary 
conditions for similarity are determined (in 
a genera1 way) from equations {18)-(20), and it 
is shown that similarity exists when both b and 
d are either power law or exponential in x. 
For d = Nx”, the power law case, c = C,x. For 
the exponential case c = constant. Choosing 
C, = 1 for the power law case, it follows from 
equations (16) and (17) that C, = -2, and 
C3 = - 1. Then equations (13) and (14) become 

oP$ + +#)’ = 0 (22) 
where: b(x) = x- ‘, c(x) G x, d(x) = Ex- ‘; and 
E can be determined from equation (17). Using 
f’(0) = f(0) = 0, equation (21) can be integrated 
three times to give 

(23) 

where A is a constant of integration. Note that 
(23) satisfies the boundary conditions (15) for 
all values of A, but A can be determined from 
(16) to be 

A = +pv2/JK. (241 

For convenience, we now choose 

K = +&L.r (25) 

and then A = 1, and equation (23) becomes 

(26) 

Having done this we have Schlichting’s [l] 
results 

f27) 

where the similarity variable pi is now defined as: 

Schlichtin~ did not consider thermal transport. 
By integrating equation (22) and applying the 
boundary conditions (15) the temperature excess 
ratio may be shown to be: 

4(V) = (1 + *?$)-2a 

and then from equation (17) we have 

(301 

where 

It may be shown that equation (30) is equivalent 
to that of Squire [6j for s~~ciently large 
Reynolds numbers. Numerical values for the 
constants J and Q can be determined from 
known physical conditions at the nozzle. For a 
uniform velocity distribution across the nozzle 

where 

Re, E %? 

V 

and Uj is the jet velocity at the nozzle. For 
developed Poiseuille flow at the nozzle 

J=TRe:, (35) 
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where the Re, here is based on the average jet 
velocity at the nozzle. 

Conditions (33) and (35) are the two limiting 
cases. For convenience we may rewrite these 
equations using the definition 

RrRe, 
a (36) 

where: a = 8/(,/3) = 4.62 implies a flat velocity 
profile, and a = 4 corresponds to a parabolic 
velocity distribution. Note now that J = 
16npv2R2/3 and K = l/R’. 

In order to evaluate the constant Q, the 
temperature distribution at the nozzle must be 
known. The temperature distribution across 
the nozzle is independent of the velocity profile 
and is uniform if the walls are adiabatic. For 
these conditions, Q is given by the following 
expression: 

Q = !$ (tj - t,) aRe, (37) 

for a uniform profile where A, and tj are the 
cross-sectional area and temperature of the jet 
at the nozz!e respectively. Using (34) and (36) 
the distributions are calculated as: 

V,“R)j f’ 0 
t-tm=(tj-tm){$)(i)Re& (40) 

where 

f(V) = 1 ;Yq2 (41) 

$J(q) = (1 + &-ZO (42) 

and 

q = Rf. (43) 

The nondimensionalized axial and radial 
components of the velocity as well as the tem- 
perature excess ratio are shown on Fig. 2. Recall 

20 

15 
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FIG. 2. Unperturbed base flow velocities and temperature 
for round jet. 

that 4 is dependent on Prandtl number. The 
curve shown is for a = 6.7. It is interesting to note 
that the radial velocity component changes sign 
at q = 2 in the boundary layer. 

Effects of buoyancy are included by retaining 
the buoyancy force term in equation (5). This 
results in the following additional term in 
equation (13), coupling f and 4. 

Since d/b4c = Ex2 similarity does not result 
when thermal buoyancy is included. This sug- 
gests a perturbation analysis and a perturbation 
parameter E: 

4.4 = K 

The stream function JI, and the temperature 
excess ratio 4 are written in terms of the per- 
turbation parameter E(X) as: 

ML x) = $&I) + c(x) +,(tl) + . . . (46) 

d(% x) = &A?) + s(x) 4,(U) + . . . (47) 
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Note that the perturbation effect of thermal 
buoyancy may be written variously as: 

2% 2 9b2 2 Grx Aro 
E(X)=gn +-x =-p$- 

(48) 

In terms of conditions at the nozzle for a flat 
profile and adiabatic walls upstream 

2 

(49) 

where the Grashof and Froude numbers are 
defined as 

Fr = Uj/Uc. (52) 

The jet velocity at the nozzle is Uj and U, G 

JWX(“o - LJI is the ~~convection” velocity. 
The resulting expressions for u and u are 

U = $[&/a -I- E(X)f;/q + . . .] (53) 

r = $ ~~(~/~~ i- E(X) ~3(~~/~3~ + . * *I (54) 

where f0 and +,, are the solutions of equations 
(21) and (22). The governing equations for the 
first perturbations f, and 4r are: 

(56) 
It is also necessary to examine the effect of 

the perturbation on the momentum and heat 
flux conditions. By using (46) and (47) in (16) 

and (17) the momentum and heat flux condi- 
tions become: 

0 0 

(57) 

+ dG,)dv +...I (58) 
Equation (58) indicates that the inclusion of 

thermal buoyancy causes the momentum flux 
to vary with x, as expected. Since there are no 
sources of heat in the flow field, the second 
integral in equation (58) must be zero. This 
integral is shown to be zero by integrating the 
energy equation (56) from 0 to 00 and using the 
following boundary conditions. 

fi(0) = f;(O) = @l(O) = f;(W) = 41(W) = 0. 

(59) 
Equations (55) and (56), subject to the 

boundary conditions (59), were solved numeric- 
ally in the usual fashion of a two-point boundary 
value problem. Since there are three known 
boundary conditions at zero and two at infinity, 
it was desirable to integrate the equations out 
from q = 0, to q = qedge. A fourth order 
predictor-corrector was used to integrate the 
equations and a conventional correction scheme 
was employed to change the guessed boundary 
conditions. It is necessary to have values for the 
dependent variables and a sufficient number of 
derivatives thereof at the starting point (PI = 0 
here). The value of the highest order derivatives 
are generally obtained (for problems posed in 
Cartesian coordinates) by inverting the govern- 
ing equations. For this case, however, numerical 
complications arise because of the axisymmetric 
geometry, since the highest order derivatives 
are equal to expressions which involve division 
by various powers of r]. To avoid this difficulty, 
expansions for small values of q were obtained, 
and the behavior of fi and 4, was determined 
for values of q near zero to be: 
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+A$ 
> 

lnq -+ 
i&‘16 I[ +c q2 

+~~6]+[-~~4+(~)~6]+... 

+H 
K 

1++;q‘+ In&$ 
> 

+(3”642r2)~4]+[-~92 

+ a(1 + 16oC) 

64 tl 

4 1 + 

.**’ 

From the boundary conditions (59) it can be 
shown that A = B = H = 0. 

For completeness, the behavior of fr and @I 
was determined for large values of q. For 
c # n/4 where n = 1, 2, 3,4, . . . we have: 

f,(q) N A’ 
[ 

f r12 - 2 Inn - i - 4Qm2 ln2q 

+ 1452qe2 In q 1 + B’[l + 48qe2 In q] 

+ C’[q-“1 + 
-42” 1 ’ 

4-4a 

16(1 - a)(1 - 2a)(3 - 20) 

+ 42~- 1 404 -1253+1352-65+4 2_4a 

o(l-~)~(b-25)~(3-25) ’ 1 +.” 

(62) 

+ 16a 

453 - 5 - 1 _4 

(1 + a)(1 + 25) > 1 ’ 

- 3r~B’4~“~-~” In q + . . . . (63) 

It is noted that the character of these expansions 
for f, and &, is Prandtl number denendent and 

logarithmic terms arise for Prandtl numbers that 
are integral multiples of $ (i.e. for cr = n/4 
where n = 1, 2, 3, . . .). 

The numerical procedure is to guess C and G 
such that the two distant boundary conditions 
are satisfied (i.e. A’ = G’ = 0). Note that 2C = 
f;‘(O) = f;/q(O) = u,(O) and G = (6i(O); A’/24 = 
f;(m) = u,(m) and G’ = #,(co). By using the 
above procedure, equations (55) and (56) were 
numerically integrated subject to the boundary 
conditions (59) for several Prandtl numbers of 
67, 10 and 20. 

RESULTS 

The perturbation velocities and temperatures 
are shown on Figs. 3-5 for Prandtl numbers of 
67, 10 and 20. Figure 3 shows the axial velocity 

0.84 

OIE 

I 2 3 4 
b”Z - ? 

FIG. 3. Axial component of velocity induced by thermal 
buoyancy. 

1 

FIG. 4. Radial component of velocity induced by thermal 
buovancv. 
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FIG. 5. Temperature perturbation resulting from the inclu- 
sion of thermal buoyancy. 

component induced by buoyancy. Figures 4 and 
5 show the corresponding radial velocity com- 
ponent and the temperature respectively. Com- 
posite velocity and temperature distributions 

FIG. 6. Composite velocities and temperature distribution 
for various amounts of thermal buoyancy. 

are shown on Fig. 6 for E = -r_ 1. Note that the 
effect of buoyancy on the temperature distribu- 
tion is so small for E = 1 that it cannot be shown 
using the scales of Fig. 6. 

These figures show that the effect of thermal 
buoyancy on the velocity and temperature 
profiles increases as the Prandtl number de- 
creases. This is consistent with physical reason- 
ing. The relative thickness of the thermal 
boundary region increases as the Prandtl number 
decreases thus increasing the size of the buoyant 
region. In addition, for a given temperature 
difference, the magnitude of the total buoyant 
force is increased as a result of the increased size 
of the thermal region. Or more concisely, as the 
Prandtl number decreases, the relative size of 
the thermal region increases, causing a larger 
and more extensive thermal buoyancy force. It 
can also be seen that the effect of thermal 
buoyancy manifests itself most strongly on the 
axial velocity component; causing a nearly 
7 per cent increase in the centerline velocity 
for a Prandtl number of 67 and E = 1. 

From Fig. 4 it can be seen that the radial 
velocity component is reduced by about 7 per 
cent for a Prandtl number of 67 and E = 1. The 
point of radial velocity reversal is also moved 
slightly toward the axis by thermal buoyancy. 
The radial velocity at the edge of the boundary 
layer is very little affected by thermal buoyancy 
for the Prandtl numbers considered here. 

The effect of buoyancy on the temperature 
profiles can be determined from the nondimen- 
sionalized temperature excess ratio as shown on 
Fig. 5. Comparing the magnitude of the tem- 
perature perturbation to the velocity perturba- 
tion we see that the temperature profiles are 
affected least by the inclusion of thermal 
buoyancy. The temperature corrections occur 
near the center of the jet (q d 2); and slightly 
increase the centerline temperature. However, 
they reduce the temperature profile by less than 
2 per cent at larger q. 

A striking feature of the profiles shown in 
Figs. 3-5, is that the curves exhibit negative 
portions suggesting a reverse effect on velocity 
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and temperature at a certain point in the 
boundary layer. We see from Fig. 6 that the 
composite solutions for the axial velocity and 
the temperature excess ratio are everywhere 
positive (even for the extreme cases E = + 1). 
This “reversal” behavior can be explained by 
considering the effects of buoyancy on the 
physics of the velocity and temperature fields. 

That the buoyancy coupling would increase 
the axial velocity in the region of the thermal 
boundary layer is expected. The increased axial 
velocity causes the magnitude of the negative 
(inward) radial velocity to increase in the vicinity 
of the edge of the thermal boundary layer. In 
fact, from Fig. 4 it can be seen that the perturba- 
tion radial velocity component reaches a maxi- 
mum near the edge of the thermal boundary layer. 
It is this increase in the inward portion of the 
radial component which thins, or squeezes in, 
the axial velocity distribution just beyond the 
edge of the thermal boundary layer. 

It is interesting that McNaughton and Sinclair 
[9] observed such a thinning in their experi- 
mental jet studies as a result of small density 
differences between the jet fluid and that of the 
surrounding medium. 

The alteration of the temperature field, how- 
ever, appears to be caused by more complicated 
interactions since the positive radial velocity 
component is reduced inside the region of the 
thermal boundary layer because of the increased 
axial component in that region. In fact, it can 
be seen that the effect of buoyancy on the radial 
velocity component is larger inside the thermal 
region than outside it. This effect alone would 
tend to “thicken” the temperature profile. There 
is, however, another effect. The concept of 
“turning on” an aiding thermal buoyancy force 
(i.e. letting E take on positive, nonzero values) 
is equivalent to an effective increase in the 
center-line temperature. This accounts for the 
slight positive portion of Fig. 5. At the same time, 
however, the increased axial velocity causes 
the quantity of heat convected downstream to 
increase without an associated increase in the 
heat diffused outward. Also the heat convected 

outward is reduced because of the lower radial 
velocity. The net result is, then, that there is a 
relative concentration (toward the axis) of heat 
convected downstream with buoyancy forces 
present. This would tend to cool or “thin” the 
temperature profile. Apparently the “thinning” 
of the temperature profile is slightly more effec- 
tive than the thickening caused by altered radial 
velocity. This would explain the mild “thinning” 
of the temperature profile. 

The mass rate of flow, ti of the jet can be 
calculated as 

f (WI 
l+&(x)++... 1 . (64) 

Thus, the buoyancy effect introduces an addi- 
tional x3 dependence of riz. Values of f,(cc), 
f y(O) and 4,(O) are presented in Table 1. Since 

Table 1 

(T fAa) f 30) 4,(O) 

67 -0QO6553 01273 oaO1113 
10 - 0004328 0.09977 OQOO8991 
20 - 0.002340 0.06365 OmO5535 

f,(co) is negative, the effect of buoyancy 
decreases the mass flow rate. The magnitude of 
fr(co) indicates however that this effect is small. 
From Fig. 3 it might appear that the mass flow 
should be increased because of the dominant 
increase in the axial velocity. However, since the 
cross-sectional area varies as the square of the 
radial distance; even small changes in the velocity 
profile further from the center can become sig- 
nificantly important in the mass flow integral. 
This is the case for the profiles of Fig. 3. 

Although the inclusion of thermal buoyancy 
effects does not produce extreme changes in the 
velocity and temperature fields, it is noted that 
the effects on the velocity field increase as the 
Prandtl number decreases. 

We note that the opposed buoyancy effect is 
included in these results with E < 0. 

Since thermal buoyancy is seen above to result 
in rather small changes in the velocity and 
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temperature fields, it may not be feasible to 8 
experimentally verify these predictions. Never- 
theless, even these small effects of buoyancy 9 
coupling could have important influences on the 
hydrodynamic stability of jet flows. The effect on 
stability might be particularly strong when the 

,. 

buoyant force opposed the jet momentum, and, 
for Prandtl numbers which concentrate this 11 
retardation of flow near the center of the jet. ’ 
Because of the large difference between laminar 
and turbulent transport parameters, entrain- 
ment, etc., it is of considerable practical im- 
portance to know under what conditions one 
might expect each of these flow regimes. hi”, 
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APPENDIX 

The present results indicate that small 
amounts of buoyancy change the transport 
characteristics of a jet, and show the trends for 
potentially larger amounts of thermal buoyancy. 
These results also provide a basis for calculating 
the effects of buoyancy on the hydrodynamic 
stability of laminar jets. 

AT c;essary Conditions for Si~~~urity of the Bo~ndnry-Layer 
~quufio~s 

ACKNOWLEDGEMENTS 

The writers wish to acknowledge support for this research 
under the National Science Foundation Grant GK18529. 

1. 

2. 
3. 

4. 

5. 

6. 

7. 

REFERENCE 

H. SCHLICHTING, Laminare Strahlausbreitung, ZAMM 
13,260; Boundary Layer Theory, pp. 164,181. McGraw- 
Hill (1933). 
W. BICKLEY, The plane jet, Phil. Mug. 23, 727 (1937). 
E. N. ANDRADE and H. S. TSIEN, The velocity-distribu- 
tion in a liquid-into-liquid jet, Proc. Phys. Sot. 49, 381 
(1937). 
W. N. ANDRADE, The velocity distribution in a liquid- 
into-liquid jet, Part 2: The plane jet, Proc. Fhys. Sot. 
51, 784 (1939). 
L. LANDAU, See L. D. LANDAU and E. M. LIFSHITZ, 
Fluid Mechanics, p. 86. Pergamon Press, Oxford (1943). 
H. B. SQUIRE, The round laminar jet, Q. J. Mech. Appl. 
Math. 4, 321 (1951). 
R. S. BRAND and F. J. LAHEY, The heated Iaminar 
vertical jet, J. F’fuid Mech. 29, 305 (1967). 

Recall that the boundary-layer equations in cylindrical 
coordinates admit similarity form if equations (18)-(20) are 
satisfied. By integrating equation (18) we arrive at 

c(x) = c,x + c,. 64.1) 

Using equation (A.1) and integrating equation (19) b(x) is 
found to be 

b(x) = C&,x + cq)c2’zc~. (A.21 

Then from equation (20) get 

d(x) = C&,x + CJc3’c1. (A.3) 

Note that equations (A.2) and (A.3) are valid for C, # 0. If 
C, = 0 equation (A. 1) becomes 

c(x) = c, (A.41 

and from equations (19) and (20) 

&) = C, e(cI@cIr~ (A.5) 

and 

d(x) = C, e(c”‘C*)X. (A.61 

We see that both the power law and exponential centerline 
temperature distributions result in similarity. A completely 
analogous analysis yields the same results for the two- 
dimensional case. Note however that for either case the 
boundary conditions must be able to be put in similarity 
form. 

EFFET D’ARCHIMEDE DANS DES JETS CIRCULAIRES LAMINAIRES ET VERTICAUX 

R&sum& On a men& une analyse de pe~urbation qui engfobe I’effet d’Archimede et son action sur les 
champs de vitesse et de temperature d’un jet rend laminaire et vertical. Une solution numerique des 
equations de perturbation montre que I’effet predominant de la pousske thermique positive est d’accroitre 
la composante axiale de la vitesse du jet. On montre que l’importance de l’effet croft lorsque le nombre de 



THERMAL BUOYANCY IN ROUND LAMINAR VERTICAL JETS 

Prandtl diminue. D’autres details de l’effet d’Archim8de sur les champs dynamique et thermique sont 
present& et discutes. On s’attend a ce que l’effet d’Archimbde puisse avoir un grand role sur la stabilite 

laminaire. 

THERMISCHER AUPTRIEB IN RUNDEN, LAMINAREN, VERTIKALEN 
DUSENSTROMUNGEN 

Zusammenfassung-Eine StBrungsrechnung wurde durchgeftihrt, die die Auswirkung eines geringen 
thermischen Auftriebs aufdie Geschwindigkeits- und Temperaturfelder einer runden, laminaren, vertikalen 
Diisenstromung beriicksichtigt. Eine numerische Lijsung der sich daraus ergebenden Stijrungsgleichung 
seigt, dass durch den tiberwiegenden Effekt des positiven thermischen Auftriebs die axiale Geschwindig- 
keitskomponente der Diisenstriimung anwachst. Es wird gezeigt, dass der Effekt mit fallender Prandtl- 
Zahl grosser wird. Andere Einzelheiten van Auftriebseffekten auf die Stromungs- und Temperaturfelder 
werden dargestellt und diskutiert. Es wird vermutet, dass Auftriebseffekte einen grossen Einfluss auf 

die laminare Stabilitlt ausiiben. 

TEPMWIECKAFI HOflTbEMHACr CMJIA B HPYI’JIbIX JIAMHHAPHMX 
BEPTHHAJIbHbIX CTPYAX 

AHEIOT4lqHsI-HpOBeAeHO 5iCCJIeAOBaHlte BOBMYWBHHOFO ABlImeHiWI, B HOTOPOM YYPITbIBaeTCR 

He3HaVHTeJlbHOe BJlHFlHMe TepMHYeCHOii IIOA%beMHO$i CMJIbI Ha IlOJle CIiOpOCT& K TeMllepaTyp 

B HpJWIOti BepTHKaJIbHOi? JlaMRHapHOt CTpye. %KJIeHHOe PeUIeHMe nO.?yWHHblX ypaBHeHMi$ 

B03MYIlJeHEIFl noKa3bmaeT, qT0 npeo6nanarorqee BJIIZfIHlJe IlOJlOHcL~TeJIbHOti TepMMWCHOti 

IIO~%eMHOti CHJILd YBeJlWIHBaeT IlpO~OJlbHyIO COCTaBJImOIqylo CIFOPOCTH CTPYLI. nOKa3aH0, 

9TO 3TO BJIHtiHHe BO3paCTaeT IIpH J’MeHbUIeHHll 3HaqeHAi.t ‘fllCJIa npaHRTJIH. nOHa3aHbI II 

06CyH(AaH)TCH ApylWe CTOPOHbl BJIIIHHWI 3TOZi CHJlbI Ha n0~1Fi CKOpOCTeii II TeMnepaTyp. 

@iWAaeTCR, 4TO CBO6OAHaR KOHBeKqIlR MOFKeT OKa3bIBaTb 6pnbnroe BJIClHHRe Ha YCTOhHBOCTb 

JlaMSiHapHOrO TeYeHtIFI. 


